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ABSTRACT

A general purpose software package was developed to
perform nonlinear constrained optimization of user-defined
engineering design problems of significant complexity using
desktop computers. The package, designated Microcomputer-
based Design Optimization Tool (MDOT), will accept nonlinear
functions of up to ten variables, which may be bounded, with
as many as fifty constraints. It was implemented on a
Hewlett-Packard Model 85 microcomputer with 32 Kbytes of
random access memory.

MDOT employs the method of feasible directions for con-
strained optimization, and a variable metric method for
unconstrained functions. It is interactive, provides for
monitoring the optimizati;n progress, and can be interrupted
to restart from a new point in the design space. Typical
applications of MDOT are in the design of machine com-

ponents, composite laminates, and piping systems.
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NOMENCLATURE

The nomenclature defined here is that used in the text.
] Definitions of parameters associated with the program code

accompany the code listings in Appendix B. Boldface charac-

3& ters denote vectors or matrices.
a One-dimensional search step length
D Inverse Hessian approximation update matrix
F Objective fuanion
G Vector of inequality constraints
H Hessian matrix, or an approximation to its inverse
1l Vector of design variable lower bounds
m Number of inequality constraints
n Number of design variables
P Vector used in constructing D
q Iteration number
S Search direction vector
s Scaler used in constructing D
o t Scaler used in constructing D
é% u Vector of design variable upper bounds
EE W Scaler used in constructing D
i X Vector of design variables
gg ) y Vector used in constructing D
E‘g | VF objective function gradient vector
o
N
3
& 7
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A. OBJECTIVE

»

This thesis presents, and describes the development of,

a computer software package: "Microcomputer-based Design

4

RASHA |
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Optimization Tool" (MDOT). The motivation for this work
stemmed from the lack of available general purpose programs

capable of performing nonlinear constrained optimization of

A o Ly
TS

0
.

engineering design problems of significant complexity using

desktop computers.

20X

l".
MO

In a more general sense, MDOT is intended to help focus

eq o
ne O
L

attention on the versatility and computational power of

o '.:.:..

(W

microcomputers. These machines are a potentially very

i
)

valuable resource which is just beginning to be tapped by

NP
l..ﬁ L}

.
LA

the engineering design community.

The remainder of Chapter I is devoted to an overview of

where microcomputers stand in engineering design , where

B Tt Y
) i

MDOT stands amid the optimization software currently avail-

able, and the implementation of MDOT. In Chapter II, a

-

general description of optimizatinn concepts and methods,

.
&

A

and their application to engineering design, is presented.

1; In Chapter III, the program development of MDOT is de-
ié scribed, and flowcharts of the algorithms coded are pro-
é‘s ) vided. In Chapter‘IV, the test problems which were used to
E% validate MDOT are described, along with the solutions
&z
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obtained. Chapter V is a brief summary. Appendix A is the
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MDOT user manual. Appendix B contains an annotated listing

of the MDOT program code.
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B. OVERVIEW
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There are desktop computers available today with memory

size and computational speed in excess of those of the

PR R

mainframes of just a few years ago. The fact that their

E: capabilities are not yet being fully exploited in the day- ;
&; to-day process of engineering design can be attributed in ;
g part to the lack of available software. As Falk [Ref. 1: il
ﬁf p.50] observes, "...engineers...have little time or pa- f
&E i tience to do computer programming.” Even among those engin- f
. eers who have the time and patience, there persists a reluc-

tance to program on microcomputers because of a perceived
lack of general purpose utility or under-estimation of the

capability of these machines.

z

| et
= ol il

Design optimization is a concept which, similar to the

.ls‘ll

s ) 2

desktop computer, has received "mixed reviews" from the

engineering disciplines. While there are few who would ques-

JON TR

A e

tion the virtue of seeking the "best" solution to a problem,

P L

there are many who are reluctant to relinquish to a computer

I
'

what they see as the engineers' proprietary decisions in the

O ‘-‘_1.

design process . Our whirlwind courtship of computer aided

design (CAD) is being tempered somewhat by a counter trend

)
»

back toward "human aided design".
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It was within the framework of these two ideas that the
development of MDOT was undertaken; not only to make avail-
able a useful interactive design optimization program, but
to demonstrate that a powerful general purpose problem sol-
ver can be implemented in a microcomputer. Little knowledge
of programming is required of the MDOT user. Problem entry
and program execution are convenient. The interactive fea-
tures of the code permit the design engineer to keep in
close touch with the progress of the problem solution and to
interrupt program execution to make parameter adjustments
based on engineering judgement.

The chief advantage that microcomputers enjoy over main-
frames is their low cost. Small computers are typically
purchased outright, so that their use incurs no additional
expense for connection or run time. Their major disadvantage
is comparatively slow computational speed, but it is doubt-
ful that engineering design ever progresses so rapidly as to
make it imperative that a solution be obtained in seconds
rather than minutes. In any case, this disparity is rapidly
disappearing with the development of 16 and 32-bit micro-

processor-based desktop computers [Ref. 2: p.2].

C. OPTIMIZATION SOFTWARE CURRENTLY AVAILABLE
There are several powerful general purpose optimization
programs available, such as COPES/CONMIN [Ref. 3], which can

deal with a wide range of design problems. These programs

11
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must reside in a mainframe computer, and their use can be
cumbersome, especially for the occasional user. At the other
extreme are those codes developed for use in computers with
limited memory. Typically these are special purpose programs
employing zero order or simple first order methods, such as
random search or steepest descent, capable of handling only

relatively small problems. They are convenient, but of lim-

ited usefulness.

The gap between these two categories requires that opti-
mization of the great number of general design and analysis
problems which are on a scale that could easily be handled
by small computers be done on a mainframe or not at all.
This often leads to overmodeling, wherein a relatively
simple problem is unnecessarily made more complicated in

¥ order to more fully utilize the machine capability or to
Justify the expense of computer services. MDOT was developed
specifically to bridge this gap.

MDOT provides the design engineer with a convenient tool

for optimization of nonlinear problems in up to ten bounded

independent variables subject to as many as fifty inequality
constraints. All that is required is access to a desktop
computer, and today there are certainly few engineers who

lack this.

12
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D. IMPLEMENTATION OF MDOT

The program development for MDOT was done on a Hewlett-
Packard model 85A microcomputer, which is built around an 8-
bit microprocessor. This particular machine is so often used
as a data aquisition system controller that its stand-alone
computational capability may frequently be overlooked. A
versatile, engineering oriented computer with high machine
precision, it is nonetheless on the low end of the memory
size scale with just 16 Kbytes. The computer’s capabilities
were enhanced by the addition of a 16 Kbyte memory extension
module and three read-only-memory modules: the matrix, ad-
vanced programming, and printer/plotter ROMs. As configured,
there were just over 30 Kbytes of memory available for
programming.

MDOT was written in HPBASIC, which differs in some re-
spects from standard BASIC. As such, in its present form
MDOT is limited to use in the HP series 80 computers. With-
out much difficulty, though, the code could be translated
and run on almost any available hardware. Additional com-
ments concerning transferrability of the code are presented

in chapter III.

13
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II. OPTIMIZATION

A. APPLICATION TO ENGINEERING DESIGN

Design has been described as the creative process
through which the engineering profession develops devices,
processes and systems to fill the needs of man [Ref. 4:
p.170]. A "need" must first be defined in terms of specific
requirements which the design must meet. Then the engineer,
drawing on available resources, synthesizes proposed solu-
tions to meet these requirements. Many such designs may, and
usually do, exist. Thus there arises .the subproblem of
finding the best of these deiigns, and the inherently iter-
ative nature of design.

Traditionally, the solution to this subproblem was
sought through comparitive analysis of a reasonable number
of alternative designs; a tedious and expensive procedure
for problems of even moderate complexity. The recent devel-
opment of a broad range of very useful CAD software has made
it possible to remove a good deal of the tedium, and, per-
haps to a lesser degree, the expense of engineering design.
For the most part, though, these tools have made no fun-
damental change in the approach taken to solve the design
problem. What they have done is redefined the phrase "a

reasonable number of alternative designs". By programming

14
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the analysis and comparison tasks into a computer, the
engineer is able to consider many more possible solutions in
the same amount of time.
Optimization methods are a significant extension of the
3 - CAD concept in that they enable the engineer to exploit the
capabilities of the computer over the entire scope of the
design process. In optimization, the computer is tasked not
only with analysis and comparison of previously selected
designs, but with selection of the designs to be considered
in subsequent iterations as well. Since this intermediate
design selection can be quite complex, closing the design p
loop in the computer can lead to a considerable savings of

time and effort in the search for the optimum.

B. THE NATURE OF THE PROBLEM
Fundamental to the economical solution of the design
prohblem is that it be quantified and formulated mathematic-

ally to permit conceptual, rather than physical, manipul-~

ation of resources. The design, then, is specified by ass-
igning values to a set of independent variables which repre-~
sent its physical characteristics. The measure of goodness
of the design used for comparison with others is expressed
as some functional relationship between these variables. The
requirements placed on the design, as well as the physical
limitations of the design itself, define a region in the

multi-dimensional mathematical design space. The design must

15
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{% reside inside this region to be acceptable. In the termin- i
1‘-\
by
91 ology of optimization, the measure of goodness 1is the |
{
R objective function, the requirements and limitations are
:Ej constraints, and designs which fall within the region
i bounded by the constraints are considered feasible. As
oy examples, the set of independent design variables might be
l\"\‘ %
‘Qﬁ the cross-sectional dimensions of a structural element, the
%
bl objective function its weight, and the constraints its
35 maximum allowable stress and size limitations.
&N
:ji In general, the formulation of a design problem leads to
\%‘ an objective and a number of constraints, all of which may
‘:i be linear or nonlinear functions, explicit or implicit in
-,
_ﬁ& many design variables which themselves are subject to limi-
\’1
- tations, called bounds or side constraints. Stated mathe-
_{'_ ) matically [Ref. 5: p.9], the design optimization problem is
P4
LY
b2 to
-
~:: Minimize: F(X) objective function
o
ij Subject to: G3(X)<0, J=1,m inequality constraints
. 1;<X<uy i=1,n side constraints
:éi Where: XT={X1,X2,...Xn} design variables
:3; 1T={11,12,u.1n} lower bounds on X
x T_{ } bound X
,$i u'={uq,up,...u, upper bounds on
A4
2
L5 If in the problem formulation it is more convenient to
L4
"N define the objective function as a quantity which is to be
e
o
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maximized, such as efficiency or torque, then the above

statement may simply be modified to read "Minimize: -F(X)".

C. THE NATURE OF THE SOLUTION

Optimization is an application of mathematical theory
concerning identification of the extrema of functions. In
multivariable calculus, for example, the method of Lagrange
multipliers is developed, which provides a closed form
solution for the extremum of a constrained function. While
useful for demonstrating concepts and developing methods,
such analytical techniques are not practical for solving any
but the simplest of problems. Design optimization methods
involve numerical approximation techniques and iterative
search schemes. They are ideally suited to, and in fact made
practical only through, the use of digital computers.

Many optimization algorithms have been developed around
widely varying strategies. Common to most are the three

basic tasks that make up one iteration of the solution loop:

1. Selection of a direction in the design space along
which to search.

2. A search for the most improved design in this
direction.

3. Convergence testing to determine when the optimum

design has been found.

17
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}3 For unconstrained problems, these tasks are relatively

z\ straightforward. Addition of a constraint set may, depending

g: on the sophistication of the method employed, complicate the ‘
; first two steps considerably. ]

P A
LR N SR

Except in the case of zero order methods, selection of a
search direction involves calculation of partial deriv-
atives, for which general purpose optimizers use numerical
techniques, such as finite forward differences. At any point
in the design space, the negative of the gradient of the
objective function indicates the direction in which the
objective function is most rapidly decreasing. This may not
be the best direction in which to search, however, if the
objective function is highly nonlinear or if the design is
near one or more constraints. Efficient algorithms variously -
employ constraint gradients, Hessian matrix approximations,
and previous iteration history information in addition to
objective function gradients to select the search direction.

Finding the best improved design along a line in the
specified direction is termed a "one-dimensional search",
because the objective and constraints are treated as func-
tions only of the "distance" along this line from the cur-
rent design point. Techniques employed in the one-dimen-
sional search include the golden section and Fibonacci
methods, polynomial approximations, and combinations of
these [Refs. 5,6]. If constraints are present, the best

improved design may not be the point on this line at which

TR H
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the objective function is minimized. If a constraint is
violated, the design is infeasible, so the search algorithm
must seek the point at which the objective function is
minimized while remaining inside the feasible region.

Part of the optimization problem formulation is specifi-
cation of an initial design point from which to start the
solution process. For constrained problems, the possibility
exists that this initial design will be infeasible. To
provide for this, the search direction routine must find the
direction which will yield the shortest path to the feasible
region, and the one-dimensional search algorithm must allow
for the possible necessity of increasing the objective func-
tion in order to attain feasibility.

Convergence to a global optimum generally cannot be
guaranteed. Theory provides the Kuhn-Tucker conditions
necessary for the existence of an optimum, but these are
neither convenient to evaluate nor sufficient to define
optimality [Ref. 5: pp. 17-20]. In practice, convergence is

typically considered to be indicated by one or more of the

following:
3 1. Failure to find a search direction which will lead to
Eé an improved design.
g 2. Given a direction, failure to find any significant
Eg search step length to improve the design.
s 3. Finding no appreciable design improvement over a
g specified number of iterations.
%
N
3y 19
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If the possibility of local minima exists, the optimi=- 1
zation should be repeated from several different initial I
designs. For constrained problems, the optimization process
may fail to find any feasible solution, in which case the
problem must be reformulated.

An iteration in the optimization solution, then, may be
summarized. Beginning from the current design point X9, a
search direction, 89, is determined. Then the one-dimen-
sional search is conducted to find the "distance", a, along
Sq, which yields the best improved design. The design is
then updated as

XQ+1 = xq + asq

at which point the objective function is reevaluated and the
design checked for convergence.
Optimization algorithmic efficiency and convergence

behavior are affected by the mathematical characteristics of

the problem. As numerical methods, they are susceptible to

I DT

ill-conditioning. Truncation and round-off errors, which are

an unavoidable consequence of the use of digital computers,

aggravate this. Given an optimizer suitable to the problem

-
P
.

type, careful problem formulation, as discussed in Appendix

W

AR5

A, is the best insurance against poor optimizer performance.
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III. PROGRAM DEVELOPMENT

PR bt IO

aca ).

A. BASIC CRITERIA

At the outset of the program development, four basic
criteria were established to be met by MDOT: utility, mini-
mization of required memory, user conéenience, and reduction
of problem run time. At points where conflict existed
between them, these criteria were prioritized in the order
listed. Few such compromises were necessary, as the require-
ments wWere found to be generally complimentary.

The utility criterion meant that MDOT should be a
general purpose optimizer which could be applied to a wide
rénge of design problems. Minimization of memory was
dictated by the limitaions of microcomputers, and affected
not only algorithm selection and problem size, but many
aspects of the actual coding as well. User convenience
considerations drove the development of those portions of
the code which are interactive, and those involved with
problem entry and output options. Reduction of problem run
time was a factor throughout the development, most notably
in the incorporation of optimization progress display and

the interrupt/restart option.
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B. MDOT ALGORITHMS

a

1. Algorithm Selection

. Of the many optimization algorithms available, the

J TGO AR

zero order methods, as well as the simpler of the first
order methods, were ruled out on the basis of their lack of
general purpose utility. Others, including linear and quad-
ratic programming types, were eliminated because of their

excessive memory requirements [Refs. 7,8]. Finally. ihe need

= to reduce problem run time while retaining utility lezd to
RS the selection of two algorithms, each capable of nonlinear

multidimensional optimization. The first is a variable

DL £

fatd

3w

metric method which is used in MDOT for unconstrained opti-

= 8

mization, the second is a method of feasible directions, for

Cs

minimizing constrained functions.

-
Ay

% The selection of the one-dimensional search strategy
E to be employed was driven by the need to reduce problem run
! time. There is a trade-off to be made between the precision
§ to which the search step length determination is made and
g the time required for each optimization iteration. Both the
! golden section and Fibonacci search methods can attain very

precise solutions, but to do so they become computationally

et

expensive. In MDOT the one-dimensional search routines were

designed to seek a less precise step length solution in
order to complete each iteration more quickly. The method
employed in both the optimizers estimates an initial step

length based on a reasonable change in objective function
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magnitude. The golden section ratio is then used to estab-

l1lish bounds on the solution, which is finally refined by

polynomial approximation.

B R P P
=

2. The Unconstrained Optimizer

From the derivation of the Kuhn-Tucker c¢onaitions,

LR ey
-

it is known that if at some point X' the objective function
F(X;) has a local minimum, then the gradient of the object-
ive at this point,<7F(x*), must vanish and the Hessian

LA AT, . .

matrix H must be positive definite. Combined with a second

order Taylor series expansion of F(X) about some point, say

X°, near the minimum, these conditions lead to an expression

STRte e s g o

for the direction from X° to X" as

x* - x° - _H(x°)- 19 F(X°)

In practice, determination of the Hessian matrix by finite

difference approximation, as well as inversion of the

matrix, would be computationally so expensive as to outweigh

the theoretical gain in algorithmic efficiency.

In variable metric methods, information gathered as

the optimization progresses is used to develop an approxi-

mation to the inverse of the Hessian matrix, which is then

used in determining the search direction. As such, these

first order methods have some convergence characteristics

comparable to those of second order methods. The algorithm

for the variable metric method is shown in Fig. 1.
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Fig. 1 Algorithm for the Varicblae Metric Method
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The inverse Hessian approximation is initialized as
an n x n identity matrix. To begin each iteration, the

search direction is defined as
Sq = -HYF(X9)
After the one-dimensional search and design update, H is

modified as
Ha+1 - HI 4 pd

where the form of the update matrix D determines which one
of a family of variable metric methods is being used. In

general, D is defined as

pd - %3 ppl + ¥=1 HAy(HIy)T - ¥[HAypT+p(HIy)T]

s t s
where: p = x93 - xq-1
y = VF(x9) -vFxa-h
s = pYy
t = ylHdy

Two forms of D, and thus two variable metric

methods, are available in MDOT. The first is the Davidon-

Fletcher-Powell method, where w is set equal to zero. The :
second is the Broydon-Fletcher-Goldfarb-Shanno method, with
Ww equal to one [Ref. 5: pp. 92,93]. As the convergence

behavior of a given algorithm can be somewhat problem depen-

dent, this feature allows the MDOT user to compare the

results of two variations of unconstrained optimization.
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The one-dimensional search routine employed by MDOT
in the variable metric optimizer first finds bounds on the
unconstrained minimum of the objective function, then
refines the minimum by a three-point cubic polynomial

approximation.

3. The Constrained Optimizer

The addition of a set of constraints to the optimiz-
ation problem requires that more sophisticated techniques be
applied to its solution, particularly in the determination
of a search direction and the subsequent one-dimensional
search. As is the case for unconstrained optimizers, it is
generally the method used to find a search direction which
distinguishes the different constrained optimization algo-
rithms. In the method of feasible directions, a search
direction in which a finite step will reduce the objective
function is termed useable, while one which will avoid
constraint violation is called feasible. The direction find-
ing problem is then formulated as a sub-optimization task to
determine the best of the possible useable-feasible direct-
ions.” MDOT employs the algorithm presented by Vanderplaats
[Ref. 5: pp. 163-170] for the solution of this sub-problem.

As shown in the flowchart of Fig. 2, the feasible
directions optimizer begins as a simple steepest descent
algorithm, provided the initial design is feasible. Opti-
mization thus proceeds quickly to a point where one or more

constraints are encountered.
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E On subsequent iterations the sub-optimization rou- |
ii tine is used to determine search directions so as to satisfy

ﬁ : the fundamental requirement that the optimum design be

Eé feasible. The constrained optimizer in MDOT will accept

' . initially infeasible designs. In this case, the direction

%& and search routines are modified so as to attain feasibility ‘
ﬁ as guickly as possible. Thus a feasible direction and step

i length are sought which will overcome the constraint vio-

A

lations, even at the expense of increasing the objective
function. Once inside the feasible region, optimization
proceeds as before.

As in the unconstrained case, in the one-dimensional
search routine employed in MDOT for constrained optimiz-
ation, bounds on the solution are first established, fol-~

lowed by refinement by polynomial approximation. Here, how-

ever, the search must be conducted for the zeros of the

s
constraint functions as well as for the minimum of the i:
o
objective. The step length selected is then the one which §}
yields the best feasible design. Provision must also be made E!
L4
to ensure the design variables remain within their bounds ;ﬁ
N
‘ (side constraints). In MDOT, if at any time during the one- fﬁ
1 dimensional search a design variable is found to exceed an @!
} upper or lower bound, it is set equal to the value of the n;
K violated bound. ?3
| =
{ - . ‘::.
a3
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e
EE 4, Program Logic
sﬁ The relationships between the modules of MDOT are ;
?: depicted in Figs. 3 and 4 for unconstrained and constrained
és : optimization, respectively. The main program is named :
= ] "Autost" because this signals the HP-85 operating system to
2 load and run this program automatically when the computer is E
; powered up with the mass storage cartridge inserted in the
b tape drive. All the other modules of MDOT are subprograms I
is which are called into memory and executed as needed by E
Sé Autost or another subprogram. Once entered into main memory, 5
¥ a subprogram resides there for the duration of the optimiz- i
‘g ation unless a "SCRATCHSUB" instruction is executed. ;
_5 Following is a brief description of the function of ;
- each of MDOT's program segments: 5
Eﬁ Autost MDOT main calling program 5
;ﬁ LOGO Displays introductory (welcome) graphic 3
ﬁ; DEFALT Sets program parameters to default values
%; PROB Problem entry, evaluation of F and G t
: CCONT Control of constrained optimization :

UCONT Control of unconstrained optimization ]

ACON Identification of active/violated constraints

GRAD Calculation of gradients of F and G

DIRECT Direction finding subproblem solver

FDSRCH Constrained one-dimensional search

VMSRCH Unconstrained one-dimensional search

NEWH Update approximation to H-1
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CONV Convergence testing

PROG Optimization progress information

TERM Output of results of the optimization

The PROB subprogram is created by the user by
editing a skeleton problem entry code which is stored on the
tape. The edited version is then renamed and stored. Autost
queries the user for the problem name, which is then common
to all subprograms. Autost makes the first call to PROB in
order to select the appropriate optimization control rou-
tine. Thereafter, PROB is called any time an objective
function or constraint evaluation is required. Both LOGO and
DEFALT are called by Autost. LOGO generates a simple
"welcome"™ graphics display, and is scratched from memory
upon execution. DEFALT initializes ; number of program para-
meters to their default values, as defined in Appendix B.

PROG is called upon completion of each iteration.
This subprogram generates the user selected optimization
progress indicators. Options include data and graphics
displays and printed output. Based on the progress inform-
ation provided, the user may elect to continue the optimiz-
ation, restart MDOT from a different initial design, or stop
and reformulate the problem. CONV is also called upon
completion of each iteration, to determine, based on the

convergence criteria set by DEFALT, whether the optimum

design has been found.
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TERM is called to end the optimization and generates
the output of results. Termination may be invoked by a
number of conditions in other than meeting convergence
criteria. If the optimizer exceeds a specified number of
iterations, if the components of the search direction vector
are all essentially zero, if no search step length can be
found to improve the design, or if there are an excessive
number of violated constraints, MDOT will terminate. In any
case, TERM will generate an output message to indicate the
condition upon which the decision to terminate was based,
and offer the user the option of editing and restarting the

program.

C. ADAPTATION OF MDOT TO OTHER SYSTEMS

Since MDOT is coded in HPBASIC, it is not immediately
transferrable to hardware other than the Hewlett-Packard
series 80 desktop computers. Translation of the package,
either into another version of BASIC or into FORTRAN, is
certainly a "do-able" project which would significantly
expand the applicability of MDOT.

This section highlights those features of HPBASIC used
in MDOT which would have the greatest impact on this pro-
ject. They are: variable name assignment, SUBPROGRAMS,
matrix manipulations, and graphiecs.

The limitation of HPBASIC which most decreases the read-

ability of the code is that variable names are restricted to

33
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either one letter or a letter followed by a digit. One

result of this is that arrays of subscripted variables are

,,.
£ I"f_'
s

sometimes used where individual characteristic names might

205
s s

'
4
PO R A

e-0-v-4
a e

otherwise be assigned. A feature of the language which helps

L4 " ‘.-

considerably, not only to overcome this limitation, but in

k? programming complicated algorithms, is the SUBPROGRAM.

o~

Ef Similar to a SUBROUTINE in FORTRAN, the SUBPROGRAM is
Py

5

', T
B .
.

.

called when needed and variables may be passed either by

iﬁi name or by value. In HPBASIC this allows for the use of the
EE same variable name to denote different parameters in sep-
ﬁg arate program segments. MDOT makes extensive use of SUBPRO-
é;f GRAMs. This feature is not available in all versions of
§§ BASIC. Without it, the translation of MDOT would be more

difficult, but still possible through the use of functions

and subroutines, particularly if multi-character variable

names are permitted.

nl Matrix manipulation is convenient in HPBASIC. Operations
L'.ﬂ:'
Lﬁ such as matrix multiplications, transpositions, dot pro-
) 1
T ducts, and identifying extreme array elements are all

v
l"
1S d

accomplished through simple "MAT" statements. This feature

=

LR

5& is available in some of the other versions of BASIC, but not
N

:i] in FORTRAN. Without it, additional subprogramming would be
Y

E; required to perform these operations.

S& Graphics capabilities vary widely from one hardware
3; manufacturer to another, as do the coding instructions used
EE to execute the displays. It is likely that the graphics pro-
o~
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grammed into MDOT would require major modification to make
them transferrable.

Two more details of the HPBASIC code are worthy of note:
program flags and the @ symbol. Program flags are built-in
indicators which can be set to 1 or cleared to 0, and are
used in MDOT for conditional branching decisions. They could
easily be replaced by integer variables. The 8 symbol is
used to condense the code and thus conserve memory. It
simply separates multiple executable statements on one pro-
gram line. Without this feature, each statement must have

its own line number.

D. POTENTIAL FOR FUTURE GROWTH

Besides its obvious potehtfal for expanded problem size
if implemented in a computer with a larger memory, there are
many refinements and additions which could be incorporated
into MDOT, either to enhance its general purpose utility or
to tailor it to a particular type of problem. Some modifi-
cations for improved utility might involve coding additional
algorithms, automatic design variable scaling, and the hand-
ling of equality constraints.

MDOT could be customized by modification of the problem
input subprogram, graphics display, output format, or the
algor .thms themselves. Coupling of MDOT to an external CAD
or analysis code also presents many interesting and poten-

tially useful possibilities. One such configuration might be
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to use MDOT as a subprogram called to perform optimization
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on localized aspects of a large scale design problem in

2 -

conjunction with a desktop computer CAD system [Ref. 91.
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IV. TEST CASES

Validation of an optimization program typically consists
of testing it on a battery of representative problems to
which the solutions are known [Ref. 10]. Based on the
results of such tests, a number of yardsticks exist by which
the optimizer is judged relative to others. These can be
grouped into three categories: stability, robustness, and
efficiency [Ref. 8: p.751].

An optimizer is stable if, once a feasible design is
attained, the objective function remains non-increasing
until the optimum has been found. A robust optimizer is one
which yields a valid solution given a poor initial approxi-
mation. Efficiency refers either to the number of function
and derivative evaluations required in the soluticn or to
the problem run time. These two measures of efficiency are
closely related if comparing different optimizers run on the
same machine, since function and derivative evaluations are
typically costly operations.

To these measures of an optimizer's performance, a
fourth category should be added; that of utility. Given a
stable and robust optimizer, there are characteristics in
addition to its efficiency which should be considered in

determining its utility. Problem size and type solvable by

37
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the program are of fundamental importance, as is memory

3
!
*
¢
&
L}
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étorage required to run it. There are trade-offs involved
here in program development between the sophistication of '
the algorithms used, speed of convergence, hardware
capabilities, cost of run time, and user convenience. The
utility of the optimizer is an indication of how these

trade-offs were made, and involves much more than just

- B o~  —— — R W ——

efficiency.

A. UNCONSTRAINED TEST PROBLEM

Among the unconstrained test problems run on MDOT was

the so-called "banana" function:

F(X) = 10X, - 20X,2X, + 10X,2 + X;2 - 2X; + 5

which has an optimum of F(1,1)=4.0. This function derives
its name from the shape of the contours of constant objec-
tive function (Fig. 5). Although only two-dimensional, the
banana function is a good test of an unconstrained optimizer
because the objective function surface becomes a steep,
narrow, curved "valley" as the optimum is approached. An
inefficient optimizer will tend to "zig-zag"™ in such a
design space, resulting in slow convergence near the solu-
tion, while a non-robust optimizer will tend to terminate

3 prematurely.
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Results of the performance of MDOT on the tanana

function are summarized below.

Initial design: X% = 1.0
o .
x2 - 1-5
F° = 10.5
Optimum: X1' = 0.95979
X," = 0.91442
F¥ = 4.002

MDOT arrived at this solution in about one minute, after 12

iterations and 66 function evaluations.

B. CONSTRAINED TEST PROBLEM

Among the constrained test problems run on MDOT was the
cantilevered beam problem posed by Vanderplaats [Ref. 3:
p.81, as illustrated in Fig. 6. The objective function in
this case is the volume of the beam, for which a theoretical

optimum of 6603.9 is known. Results of the performance of

ADOT on this beam design problem are summarized below.

Initial design: X2 = 3.5
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Cantilevered Beam:

N

P=10, 000 1b

SN
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Design Variables:

Ubjective Function:

Constraints:
Wherea:
(|
Ef
t&l
K .
:.:_- F 1 g- 6
h,
- |
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> 'JE

L
'

s

fje——————— 1=200 in ——=

g

B
Volume

Bending Stress < 20,000 psi
Deflection < 1.0 in

Ratio of h to b < 10.0

0SS, <= 5= 5.0

1.0 < h < 20.0

Bending Stress = Mc/1
Deflection = P13/3E1

Constrained Test Problem
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}5 Optimum: X1' = 1.8261
X," = 18.174

:f F* = 6637.5
2 !
- G,* = -0.024

5 G," = -0.00656

i G3" = -0.00522

E; MDOT arrived at this solution in about two minutes, after 11

g iterations and 56 function evaluations.

.‘ With refinement of the algorithms, improvement could

g likely be realized in the program performance. All variables

;v in MDOT are declared "SHORT", which in HPBASIC means they
f are carried to 5 digits. In a machine with just 64 Kbytes of

g memory, this could be changed to "REAL", in which case 9

;E digits would be carried, with an attendant improvement in

t the precision of the solution. The number of function eval-
53 uations, and thus the problem run time, could be decreased

% by modification of the algorithms such that gradients are

not calculated in every iteration. Also, the efficiency of
the one-dimensional search routines could be improved by
distinguishing between linear and nonlinear constraint

functions.
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V. SUMMARY

Optimization is a useful tool in engineering design. The
desktop computer is the vehicle through which this tool can
be made widely available, convenient, and inexpensive. The
development of MDOT affirms the feasibility of implementing
a powerful general purpose optimization algorithm in a com-
puter with limited memory.

The applicability of MDOT could be expanded through con-
version to standard BASIC or translation to FORTRAN. It has
potential for growth in terms of versatility and problem
size, and lends itself to tailoring to suit a particular
class of problem. MDOT could be coupled with a microcomputer
CAD package to close the design loop in the computer.

MDOT has been validated by tests on a number of problems,

both constrained and unconstrained. Its performance is good,
and could be made better through refinement of the
algorithms. Specifi~s modifications might involve the one-
dimensional search rroutines and the frequency of gradient
calculations.

As microcomputers continue to become more commonplace and
their capabilities continue to improve, emphasis will shift
away from the mainframes for the solution of problems which
are on a scale easily handled by smaller machines. Software

such as MDOT will both accompany and encourage this shift.
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APPENDIX A
MDOT USER MANUAL

1. INTRODUCTION

To avoid repetition, references to material presented in
the preceding chapters are made in this appendix. A useful
follow-on project would be to assemble a user manual for
MDOT independent of the background and developmental
material in the body of the thesis. Details of computer
operation have not been included here, as it is assumed that
the user is either familiar with the machine or has access
to the operating manual.

MDOT is currently available only on magnetic tape
cartridge for use in Hewlett-Packard series 80 computers. If
it is to be implemented in an HP-85A, the machine must be
configured with four enhancements: a 16 Kbyte memory exten-
sion module, a matrix ROM, advanced programming ROM, and a
printer /7 plotter ROM. No peripheral devices are required,

nor is extensive programming.

\";
beig 2. PROBLEM FORMULATION

Formulation of a well-posed problem, as discussed in

- a

chapter 1I, is fundamental to the satisfactory performance

2y
Faralel
- L]

ety
G, | of an optimization program. First, the design variables must

be identified. These are the parameters of the problem which
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the optimizer will be permitted to change in its search for
the best design. The objective must then be a function of
these variables, and the minimum of this function is what
the optimizer will seek. Constraints may be imposed on the

design in two ways:

1. Upper and/or lower bounds (side constraints) may be
specified for any of the design variables.
2. General inequality constraints may be expressed as

functions of the design variables.

Side constraints are explicitly assigned when the initial
design estimate is entered into the problem subprogram.
Inequality constraints must be formulated as quantities
which are to be less than or equal to zero. Care should be
exercised to avoid redundant or otherwise unnecessary con-
straints. In MDOT, an unconstrained problem has neither side
constraints nor inequality constraints. MDOT has no pro-
vision for equality constrained problems.

The objective function can be any characteristic of the
design expressible mathematically in terms of the design
variables. It is important to keep in mind that it is the

minimum of this function which is sought. If the problem is
formulated around an objective which is to be maximized,
then it must be entered in such a way that MDOT will seek to

minimize the negative of this objective.

------
-----

---------------
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An important consideration during problem formulation is
the range of orders of magniiude of the design variables.
Optimizer performance is best in a design space in which the
contours of constant objective function are concentric hy-
perspheres, such that a given change in one variable has the
same effect on the objective as an equal change in any other
variable [Ref. 11, p.17]. In practice, this is approximated
by scaling the design variables such that they are all of
the same order of magnitude, or nearly so. Some optimizers
do this automatically, MDOT does not.

Selection of the initial design point from which to
start MDOT will affect its performance and problem run time.
Any available information which will improve the initial
approximation should be used. If a constrained problem is
Seing entered, a check should be made to ensure the initial
design falls within the side constraints. Although MDOT is
equipped to handle initially infeasible designs, convergence
Wwill 1ikely be more rapid if the initial design is free of
violated inequality constraints. In some cases, initial
feasibility may be a difficult thing to build into the
problem formulation. MDOT will display the results of the
first design evaluation and indicate whether or not it is
feasible. At that time, the user may elect to proceed with
the optimization or edit the initial design and restart the

program.
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3. PROBLEM ENTRY
MDOT problem entry is accomplished by editing the PROB

subprogram. With this module loaded into memory and listed 5

on the CRT, modifications are made on the program lines

noted below.

Line 10:

The file name of the subprogram is changed to any
name up to 6 characters in length, except any of

those already assigned to MDOT files.

Line 100: 2
Just after the word DATA, two integers are added,

separated by a comma. The first is the number of
design variables, (N1), the second is the number
of inequality constraints,‘(N2). For unconstrained

problems N2 is always zero.

Lines 201-210:

Initial values of the design variables are en-
tered, beginning with X1 on line 201 and contin-
uing, one variable per line. If the problem is
constrained, each initial value is followed by the
lower and upper bounds assigned to the correspond-
ing variable. If no bound is to be specified, th=

field is filled by an "N".
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Lines 231-398:
These lines are available for defining expressions
to be used in the design evaluation. These state-
ments wWill be executed prior to each objective or
constraint computation. Whenever the design vari-
ables aré used in this, and the remaining sections
of the subprogram, they are expressed as X1,

X2,...X0.

Lines 400-459:
These lines are available for defining the object-
ive function, which must be assigned the variable

name F.

Lines 500-9000
These lines are available for defining the in-
equality constraint functions, which must be sub-

scripted variables named G(i), i=1,N2.

Depending on the complexity of the problem, the user may
elect to use any BASIC programming structures in this sub-
program. As examples, FOR-NEXT loops, FUNCTIONS, SUB-
ROUTINES, and even other SUBPROGRAMS could be used in the
problem formulation. With about 7.3 Kbytes of memory avail-
able for constrained problem entry, and twice that for
unconstrained problems, there is space available for con-
siderable programming. Variable names used may be any except

those included in the PROB nomenclature, as defined in

48
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Appendix B. If subscripted variables are to be used, a DIM
(dimension) statement must be inserted near the beginning of
the subprogram. When problem entry is complete, the subpro-
gram is stored under the new file name.

Listings of the subprograms created for the test cases
of Chapter IV are included at the end of Appendix B, under
the names "BANANA"™ and "BEAM". Comparison of these 1listings
to that of PROB, which is the unedited version, will help to
illustrate the problem entry procedure for both constrained

and unconstrained cases.

4, PROGRAM EXECUTION

MDOT is started either by execution of LOAD "Autost" and
RUN commands, or by powering up the computer after inserting
the tape cartridge, as explained in section III.B.4. After
the "welcome" graphic, the user is queried as to the problem
file name, progress display options and output format
desired. Optimization then proceeds.

The user may choose to monitor the optimization closely,
or perhaps not at all. For example, if a constrained problem
is being run for the first time, the user may want to check
for rapidly changing design variables so that the option of
editing and restarting might be exercised. On the other
hand, if a problem known to be well-behaved is being re-run
with relatively minor changes, the user may elect to

"ignore™ MDOT until the solution is obtained.

49
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Any of the values carried by the DEFALT subprogram, as
defined in the listing in Appendix B, may be changed. They
may be permanently modified by editing and re-storing
DEFALT. Alternatively, a default value may be changed during
program execution, whenever the edit option is invoked, by
reassigning its value from the keyboard. If the program is

restarted, though, DEFALT is recalled.
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APPENDIX B
ANNOTATED PROGRAM LISTINGS

In an effort to conserve memory, MDOT was coded without
remark statements. The program listings are therefore pre-
sented in an annotated format to aid in following the logic

flowpaths. Nomenclature common to two or more modules is

L
¥
o
[
«
|
3
1

defined first, then the additional nomenclature unique to

each module immediately precedes the applicable segment of
the code 1listing. Numbers in parentheses in the function
descriptions refer to line numbers in the associated program
segment. Parentheses following a variable name in the nomen-
clature lists indicate vectors, while parentheses enclosing

a comma indicate two-dimensional arrays.

COMMON NOMENCLATURE

A1() Addresses in G() of violated and active constraints
A2() Values of constraints identified in A1()

C1(5 Vector of integer default values

ca() Vector of non-integer default values

D() Current objective function gradient

D1() Previous iteration objective function gradient

F Current value of objective function

FO Initial value of objective function

51




F1
G()
G1(,)
H(,)
LO)
N1
N2
N3
N4
P$
PO-P3
Q1
Q2
Q3
Q4
R1
R2
S()
X()
X00)
X1()
X90)

Previous iteration value of objective function
Vector of current constraint values
Gradients of violated and active constraints
Approximation to the inverse of the Hessian
Vector of design variable lower bounds
Number of design variables

Number of inequality constraints

Number of currently violated constraints
Number of currently active constraints
Problem subprogram file name character string
Polynomial approximation coefficients
Iteration counter

Function evaluation counter

Convergence counter

Convergencg counter

Golden section ratio

Golden section ratio

Search direction vector

Current design

Initial design

Previous iteration design

Working vector of perturbed design variables
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PROGRAM FLAGS

Unless otherwise noted, the flags listed are set to a

value of 1 when the associated condition exists.

FLAG CONDITION

1 Maximum number of iterations has been exceeded

2 Number of violated constraints greater than N1+2
3 Search vector components are all essentially zero
y No appreciable move parameter can be found

5 Convergence to optimum has occurred

6 Variable metric algorithm is to be restarted
7-8 Unassigned

9 Subprogram is to be exited without execution

10 Termination has occurred

11 Progress option select: 1 = data display

2 = graphic display
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Module: Autost

Calls: Autost calls all other modules of MDOT into
memory, then scratches those not needed for the
type of problem (constrained or unconstrained)
being run. For information transfer, Autost
calls: PROB (edited), UCONT, CCONT, LOGO, and
DEFALT.

Function: MDOT main calling program (10-370).
Interactive problem initiation (1000-1200).
Program loading (2000-2070).
Initial design display generation (3000-3130).
Design/default editing (4009-4260).

Nomenclature:
A$ Interactive query response (string)

S$&AS Concatenated string to call appropriate optimizer

.
.
.
T P P Y TPy |

D$ Display string ("FEASIBLE"™ or "INFEASIBLE")
B$ Display string ("C1("™ or "C2(")
NO Working variable for editing default values
N Interactive query response (numeric)
Ko If = 0, indicates first problem of run
hes
N 54
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10 ! Autost....

20 OPTION BRAZE 1

30 COM F#L&1 , INTEGER NI, N2 N3, N4, Q1,02,02,04,C1(10) |, SHORT

22(20)

49 DIM =4¢[(4]1,A3L1],D%(10],B$L3]

S0 SHORT X@(10),FO,G(50),L(12),U(1d),Na

&0 INTEGER N, I, KO

79 S$="CONT"

80 GOSUR 2000

90 CALL "LOGOQ" € SCRATCHSLUE "LoGo"

19@ CALL "DEFALT"

110 @1,02,03,34,N3,N4, Ko=0

120 FOR I=1 TO 11

130 CFLAG 1

140 NEXT 1

150 WAIT 1009 @ GOSUE 1009

1640 CLEAR @ CALL P% ( @ )

179 REDIM X@(N1)

189 IF N2=¢ THEN 210

170 REDIM G(NI),LI(N1),U(N1)

209 GOQTO 220

210 MAT G=ZER(1)@ MAT L=G@ MAT U=L

2260 CALL P3$ ( 1,X00),Fo,G(),L(),U() )

220 GOSUR 2009

2490 IF N2=0 THEN At="U" ELSE A$="C"

250 CALL A$X5t ( X0() ,Fo,GO),LO),U() )

260 CFLAG 10 @ CFLAG 7

27® CLEAR @ DISP @ DISP "Select option..." @ DISP @ DISP "
1) EDIT/RESTART"

230 DISP € DIsSP " 2) NEW PRCELEM" @ DIsSP @ DIzP i) [

XIT"

299 INPUT N

200 ON N GOTO 220,319,360

3219 SCRATCHZUE P$% @ GOTO 190

320 GOSUB 4000

330 CALL P$ ( 1,X00) ,Fa,GO),LO)Y,LH0) )

34@ GOSUB 3000

2350 GOTO 250

260 CLEAR

579 END
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1000 IF Ko>0 THEN 1070
1019 Ko=1

1020 CLEAR @ DISP @ DISF "Select problem type for this ru
n of MDOT:" @ DISP
19029 DISP " 1) Constrained”" @ DISP @ DIZP " 2) Uncan

strained”" @ INPUT N

1949 ON N GOTO 1059, 1060

190350 SCRATCHSUR "UCONT" @ SCRATCHSUER "VUMSRCH" @ SCRATCHSUE

NEWH" @ GaTQa 1079 p
19069 SCRATCHSUB "CCONT" @ SCRATCHSUER "FOSRCH" @ SCRATCHIUR ™ )
ACON" @ SCRATCHSUER "DIRECT"

1979 CLEAR @ DISP @ DISP "Have you created & stored your pr
ablem?" .
1689 DIsPp @ DIsP (Y or N3 ENTER)" @ INFUT A% :
1990 IF At="N" THEN 1120 :
11929 IF A$="¥Y" THEN 1140

1119 GOTO 1020

1120 CLEAR @ DIZP @ DISF " Flease refer to the" @ DISF
1130 DISP " MDOT USER MANUAL" @ DISP
1149 DISP " for instructions..."”
1156.G0TO 370 ¢
1160 DISP @ DISF "Enter problem subpragram file name. :
.." @ INPUT P$
1179 CLEAR @ DISP @ DISP "Select progress option..." @ DISP
@ pDIsP ¢ 1) VGRAPHIC DISFLAY"
. 11830 DISP @ DISP " 2) DATA DISFLAY" € INPUT N@ CFLAG 11

1199 IF N=2 THEN SFLAG 11

1200 RETURN

2000 SFLAG 9 @ DISP "Loading MOOT..." i
. 2919 CALL "DEFALT" @ CALL "CCONT" @ CALL "LCONT" @ CALL "ACC ]
Nll

202@0 DISP @ DISP "Still leading MDQT..." &
2039 CALL "GRAD" @ CALL "DIRECT" @ CALL "FDSRCH" @ CALL "vmM3 K
RCH [1] L
2049 DISP @ DISP "Almaest finished..." ;
2050 CALL "NEWH" @ CALL "CONV" @ CALL "PROG" @ CALL "TERM" '
2060 CFLAG 9 @ CLEAR

2079 RETURN
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3000 CLEAR @ DISP USING Z019 ;3 Pt

3019 IMAGE 3/,13X,6A

3020 DISP USING 303@ ;3 Ni,N2

3030 IMAGE 1/,4X,2z2D," Design Variables",/,4X,2D," Inequality
Constraints"”

2040 DISP UUSING 2050 ;3 FO

SS9 IMAGE 2/,1X,"Initial Design: F = ",K

3060 IF NZ=1 THEN 3090

3079 IF AMAX(G)<C2(3) THEN Dt="FEASIBLE" ELSE D$="INFEAZIELE

3089 DISP USING "11X,10A" 3 D%

3999 ON KEY# 1,"EDIT" GOSUB 40ae

312@ ON KEY# 4, "CONTINUE" GOTO 3139

3119 KEY LAEEL

2120 GOTO 3120

3139 RETURN

4900 CLEAR @ [DISP @ DISP "Select editing ception...” @ DIZF @
DIsp " 1) DESIGN VARIABELES"

4910 DISP @ DIsP " 2) DEFAULT VALUES" @ INPUT N

4029 ON N GOTO 4930,4140

4939 CLEAR @ DISP "Enter the address in X of the variahle
to be changed" @ INPUT 1 ;

4949 DISP USING 40%0 3 I,X9(I)

4959 IMAGE 2/,1X,"current values:s " ,"X(",K,") = " K

4069 DISP @ DISP "Enter the new value..." @ INFUT Xo(I)
4979 CLEAR @ DISF @ DISP "Editing complete 2" @ DISP ™
(Y aor N3 ENTER)" @ INPUT A% 0

40380 IF A$="N" THEN 4000

4979 IF A$="Y" THEN 4110

4100 GOTO 4970

4110 Q1,Q2=0

4129 CALL P$% ( 2,X90),Fa,G0),LO),UC0) )

4130 GOTQO 230

4140 CLEAR @ DISP @ DISP "Select default array..."” @ DISP @
DIsp 1) C1() integers"

41%¢ DISP @ DIsP " 2) C2() reals" @ INPUT N

4169 CLEAR @ DISP "Enter the address in C of the variable
to be changed" @ INPUT I

4179 IF N=1 THEN No=C1(I) EL3SE No=C2(I)

4130 IF N=1 THEN E$="C1(" ELSE B$="C2("

419@ DISP USING 4200 ; BR%,I,NO

4200 IMAGE 2/,1X,"current value: ",2A,K,") = ", K

4219 DISP @ DISP "Enter the new value..." @ INPUT Na@

4220 IF N=1 THEN C1(I)=N@ ELSE C2(I)=Na@

4230 CLEAR @ DISP @ DISP "Editing complete 7" @ DIZP " (
¥ or N3y ENTER)" @ INPUT A%

4249 IF A$="N" THEN 400¢

4250 IF As$="Y" THEN 4260

42460 RETURN
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b8! Module: LOGO

Called by: Autost

Function: Generate MDOT "welcome"™ graphic display on CRT.

aa
-

Scratched from memory upon execution.
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1 SUB "LOGO"
10 PEN 1 @ GCLEAR

20 SCALE @,10,0,10

30 PEN -1 @ GCLEAR 7

40 FEN 1 @ GCLEAR 3 |
S0 CSIZE 3» @ LORG 5 @ PEN -1

&@ MOVE 5,5 @ LAEBEL "m"

79 C3IZE & @ MOVE S,6.5 @ LABEL “o"
30 WAIT 1000 @ FEN 1 @ GCLEAR

) 79 CSIZE 12 € LORG 2
109 MOVE 1,3 @ LABEL "m"
116 MOVE 1,6 @ LABEL "d"
120 MOVE 1,4 @ LAREL "o
120 MOVE 1,2 @ LABEL "t"
140 CSIZE 2
150 MOQVE 2,23 @ LABEL "icrocomputer—-based"
149 MOVE 2,4 @ LAREL "esign"”
176 MQVE 2,4 @ LABEL "ptimization"
139 MOVE 2,2 @ LABEL "oaol"
190 SUBEND
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Module:

Called by:

Funection:

DEFALT

Autost

Set MDOT working parameters to their default val-
ues. DEFALT is called each time a new problem is

executed.

Nomenclature:

C1(1)
C1(2)
C1(3)

C1(4)-C2(10) Unassigned |

c2(1)
c2(2)
Cc2(3)
ca(u)
C2(5)
C2(6)
ca(7)
Cc2(8)
C2(9)
c2(10)
c2(11)
€c2(12)
€c2(13)

C2(14)-C2(20) Unassigned

Maximum number of iterations
Consecutive iterations for convergence criteria

Variable metric method select: 0 = DFP, 1 = BFGS

Finite difference perturbation factor

Minimum absolute ?inipe difference step
Violated constraint criterion (tolerance)
Active constraint criterion (thickness)
Push-off factor multiplier (theta zero)
Maximum value of push-off factor

Factor used in DIRECT when infeasible

Factor used in step length estimate based on F
Factor used in step length estimate based on X
F convergence criterion (relative)

F convergence criterion (absolute)

Defined zero

Epsilon, used to prevent division by zero
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) 19 SUE “DEFALT"

o 26 OPTION BASE 1

. 3@ COM P3L4) ,INTEGER NI1I,NZ, NI, N4,011,82,02,24,C1(10) , SHZRT
C2(29)

5 49 MAT C1=ZER(1@)

& 42 MAT C2=ZER(20)

-~ 44 C1(1)=20 ' max # iterations

R 446 C1(2)=2 ! consec. conv.

Y 42 C1(3)=1 ! w in H update

B - S0 £2(1)=.01 ! fin. diff. mult.

" S2 C2(2)=.001 ! min. fin. step

Q 54 C2(3)=.004 ! const. vial.

3. S4& C2(4)=—.1 ! active canst.

L3 52 C2¢(5)=1 ! push—off mult.

al &0 C2(4L)=5@ ' max. push—off

. L2 C2(7)=100900 ! Phi (DIRECT)

i &4 C2(3)=.1 ! obj. mult.

4 &6 C2(2)=.1 ! des. var. mult.

pid 68 C2(1a)=,001 ! min rel F

o 79 C2¢(11)=.091 ! min abs F

: 72 C2¢(12)=.001 ! zero

. 74 C2(13)=,0001 ! epsilon

o 199 SUBEND
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Module: PROB

4
-,

<

-
4

Iy ~ M
- :

Called by: User

Function: Provide the user with a skeleton subprogram into

which the optimization problem is entered by

2,

i

editing.

2 A

PRERY
a
Ay Ay

= 3

Tt

P 4

{)".- "J'"-

‘w
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Module: PROB (edited)

Called by: Autost, GRAD, FDSRCH, VMSRCH

Gt A o0 s
‘,‘4.‘ aA_ .
2 & .""

a
»"u?

Function: Input the number of design variables and the

number of inequality constraints (90-100).
Input the intial design and side constraints
(130-210).

v E K v

T2
LR s,

2 ¢

»
.

Evaluate the objective function and inequality

N
S
o constraints (230-9000).
;E
i Nomenclature:
~
ﬁ: K1 Flag to indicate first call or subsequent call
g LS String used in lower bound input
! us String used in upper bound input
X1-X0 Design variable names used in problem input
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...............................
...................................

19 SUR "PROR" (K1,XC),F,G(),LO),L10))

20 QPTION BASE 1

20 COM P3$C4&] , INTEGER NI, N2,N3,N4,Q1,02,02,304,201(1@) JSHORT
C2(29)

39 SHORT X1,X2,X3,X4,XS, X&, X7, X&, X?,X9

490 DIM L#C6I,usL4]

S0 IF Ki1>1 THEN 220

9@ READ N1,NZ

100 DATA

19S5 IF K1=0 THEN SUBEXIT

130 FGR I=1 TQ NI

14 READ X(I)

142 IF N2=9 THEN 170

144 READ L¢,U¢

1590 IF L$="N" THEN L(I)=-1.E9? ELSE L(I)=VAL(L$%)

140 IF U$="N" THEN LI(I)=1.E79 ELSE U(I)=VAL (%)

170 NEXT I

201 DATA

202 DATA

202 DATA

204 DATA

2035 DATA

206 DATA

207 DATA

208 UATA

209 DATA

210 DATA

220 GOsUR J8010

239 ! User—defined expressions

3299 ! Objective function

497 Q2=32+1

S09 ! CONSTRAINTS

‘7009 SUBEND
2010 X1=X(1)
7A29 X2=X(2Z)
F030 X2=X(2)
7940 X4=X(4)
7950 XS=X(S)
FO6D X6=X(6)
7070 X7=X(7)

IF Ni=1 THEN RETURN
IF N1=2 THEN RETURN
IF N1=3 THEN RETURN
IF Ni=4 THEN RETLIRN
IF N1=S5 THEN RETURN
IF N1=6 THEN RETURN
IF N1=7 THEN RETLURN
7080 XS=X(R) IF N1=8 THEN RETURN
2099 X7=X(9) IF N1=9 THEN RETURN
7100 X0=X(19) @ RETURN

PHARPRPRPRMAEPE
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Module:

- . 0 - LI e 2

CCONT

Called by: Autost

Calls:

Function:

TERM, PROG, ACON, GRAD, DIRECT, FDSRCH, CONV

Control constrained optimization by the method of

feasible directions (Fig. 2).

64
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1@ 3UB "CCONT" (X@(),FO,G(),L(),L())

2@ OPTION BASE 1

30 COM P$L&] , INTEGER N1,N2,N3,N4,01,02,02,04,C1(1@) ,SHORT
C2(29)

40 SHORT X1(1@),X(1@),0(10),51(12,18),A2(12),5(1)

S0 SHORT F,B0,AQ,F1

&9 INTEGER A1(12)

7% IF FLAG(9) THEN SUBEXIT

3@ REDIM X1(N1),D(N1),G1(N1+2,N1),5(N1)

99 A®,F1,B0=0 @ F=FO

100 MAT S=ZER(N1)@ MAT X=X&

119 MAT A1=ZER(N1+2)@ MAT A2=A1

120 Q1=61+1

130 IF ©1<C1(1) THEN 149

140 SFLAG 1 @ CALL "TERM" ( X(),F,G() ) @ SUEEXIT

159 SUBEXIT

166 CALL "PROG" ( X@(),X(),F/F@,F ) @ IF FLAG(?) THEN SUEEXI
7

179 CALL "ACON" ( G(),A1(),AZ() ) @ IF FLAG(7) THEN SUEEXIT
180 IF FLAG(2) THEN CALL "TERM" ( X(),F,G() )

190 IF FLAG(1@) THEN SUBEXIT

200 IF N3+N4#0 THEN REDIM G1(N2+N4,N1)

210 CALL "GRAD" ( X(),F,D(),G(),A1(),AZ(),G1(,) ) @ IF FLAG(
) THEN SUBEXIT

220 IF N2+N4#0 THEN 240

230 MAT S=-D@ GOTO 260

249 CALL "DIRECT" ( D(),G1(,),A1(),AZ(),S(),E® ) @ IF FLAG(?
) THEN SUBEXIT

250 CFLAG 3

260 IF MAXAB(3)3>C2(12) AND ABRS(EQ)>C2(12) THEN 240

270 SFLAG 3

28¢ IF N2#0 THEN CALL "TERM" ( X(),F,G() )

299 IF FLAG(19) THEN SUBEXIT

300 IF MAXAB(AZ)<=C2(12) THEN CALL "TERM" ( X(),F,G() )

319 IF FLAG(1@) THEN SUEEXIT

2320 IF C2(4)»=-C2(12) THEN CALL "TERM" ( X(),F,G() )

330 IF FLAG(1@) OR FLAG(9) THEN SUBEXIT

340 C2(4)=C2(4)/3

359 GOTO 17@

2360 MAT S=(1/MAXAR(S))*S@ CFLAG 4

370 MAT X1=X@ F1=F

280 CALL "FDSRCH" ( X(),L(),U(),F,D0),G(),AL(),AZ(),G1(,),5(
), A0 )

390 IF FLAG(?) THEN SUBEXIT

490 IF FLAG(4) THEN 250

410 CFLAG S

420 MAT X=(1)#X1+(A0)*S

430 CALL F$ ( Z,X(),F,G() )

440 CALL "CONV" ( X(),X1(),F,F1 ) @ IF FLAG(?) THEN ZUEEXIT
450 IF FLAG(S) THEN CALL "TERM" ( X(),F,G() )

469 IF FLAG(1®) OR FLAG(9) THEN SUEEXIT ELSE GOTO 120

470 SUBEND
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Module: UCONT

Called by: Autost

Calls: GRAD, PROG, TERM, VMSRCH, CONV, NEWH

Function: Control unconstrained optimization by the

variable metric method (Fig. 1).

Nomenclature:
K Indicates an iteration in which no move parameter
to improve the design was found

A One-dimensional search move parameter

66




190 SUE "UCONT" (Xa(),Fa,GO,LO,Uu0)

2% DPTION BASE 1

30 COM P3041 , INTEGER N1,N2,N3I, N4, 01,02, 63,33, 01(19) |, THORT

C2(29)

30 SHORT X(1@),X1¢(12),D0(10),01¢1@),5(10) ,H(10,10)

S® SHORT F,F1,A

6@ INTEGER K

7% IF FLAG(9) THEN SUREXIT

S0 REDIM X(N1),X1(N1),D(N1),D1(ND)

99 MAT X=X0@ F=F? @ K=

100 CALL "GRAD" ( X(),F,0(),G() )

110 MAT H=IDN(N1,N1)

120 D1=G1+1

139 CALL "PROG" ( X@(),X(),F/FO,F ) @ IF FLAG(Y) THEN SUEEXI
-

140 IF ©1<C1(1) THEN 172

150 SFLAG 1 @ CALL "TERM" ( X(),F,G() )

160 IF FLAG(10) OR FLAG(7) THEN SUBEXIT

179 MAT S=H*D

130 MAT S=-g

190 MAT S=(1/MAXAB(S))*S

20@ MAT X1=X@ MAT D1=[@ Fi=F

213 CALL "VMSRCH" ( X(O),F,D(),=0),A ) @ IF FLAG(?) THEN SUPE
XIT

220 IF AYC2(12) THEN 270

230 K=k+1

240 IF K<Z THEN 110

25@ SFLAG 4 @ CALL "TERM" ( X(),F,G¢() )

26® IF FLAG(12) OR FLAG(?) THEN SUEEXIT

27@ MAT X=(1)#X+(A)*S

280 CALL "CONV" ( X(),X1(),F,F1 ) @ IF FLAG(Y) THEN SUEEXIT
290 IF FLAG(S) THEN CALL “TERM" ¢ X(),F,G() )

200 IF FLAG(1@®) 0OR FLAG(Y) THEN SUREXIT

310 IF FLAG(4) THEN 110

320 CALL "GRAD" ( X(),F,0(),G() ) @ IF FLAG(Y) THEN SUEEXIT
320 CALL "NEWH" ( X(),X1¢(),D(),D1(),H(,) ) @ IF FLA3(?) THEN
SUBEXIT

340 GOTO 120

350 SUBEND
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Module: ACON
Pl Called by: CCONT

o Function: Determine the number of currently violated (N3),
E5 and active (N4), inequality constraints.
Construct the A1() vector of the addresses in G()
of the active/violated constraint set.

A Construct the A2() vector of the current values
e of this set.

Violated constraint informétion is stored in the
first N3 rows of A1() and A2(), active constraint

o information in the last N4 rows.
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10 SUBR "ACON" (G(),A1(),AZ0))
20 OPTION BASE 1

o 2 COM F3Lé&] , INTEGER M1,NZ,N3,N4, 01,02, 03, 604,01(10) ,SHORT
(, C2(2@)

. 49 ON KEY# 1 GOTO 200

) .59 IF FLAG(?) THEN SUEBEXIT
¥
4

0,0 0,1% % &4l
'
.
) VPR SRS N | . K,

. &0 CFLAG 2 @ N3,N4=0
X 79 FOR I=1 TO N2
3 20 IF G(I)>=C2(3) THEN 110
90 IF G(I)>=C2(4) THEN N4=N4+1

N 100 GOTO 1Z@

3 110 NI=N3+1

< 120 NEXT I

pooe 130 IF N2<=N1+2 THEN 15@

140 SFLAG Z @ SUBEXIT

r 150 IF N3I+N4=0 THEN SUBEXIT
o 160 MAT A1=ZER(NZ+N4)@ MAT AZ=A1
-2 179 13, Jd4=1

’5 180 FOR I=1 TO M2
- 190 IF G(I)>=C2(3) THEN 250
> 269 IF G(I)<C2(4) THEN Z&o
< 210 A1(N3+J44)=1
N 220 AZ(N3I+JI4)=G(1)

Y 230 J4=.14+1
w5 240 GOTO Z2Q

¥ 250 AL(JR)=I
{ 260 AZ(I3)=G(I)

279 J3=J32+1

230 NEXT I

299 GOTO 210

290 SFLAG 7 @ SUREXIT
310 SUREND

i
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Module: GRAD

-1 Called by: CCONT, UCONT
o
4
. Calls: PROB (edited)

N
~§S Function: Calculate the gradient of the objective function
fﬂ by first forward finite difference approximation.
e In constrained optimization, calculate gradients

-

o
-:E of the active/violated inequality constraint set.
XN
N
‘;é Nomenclature:

AL
}f F2 Intermediate function evaluation

N N Design variable perturbation
A
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5 10 SUE "GRAD" (X(),F,00(),G(),AL(),AZ(),G1(,))
- 20 OFPTICON EASE 1

SO COM P$L&] , INTEGER N1,MNZ, NI, N4, 1,02, 03,04,C1(19) [ ZHORT

C2(2a)

49 SHORT F2,X7(1@),N |
S@ ON KEY# 1 GOTO Z10 |

LIRS 4
y oy
it Vi

\.!
23 &® IF FLAG(Y) THEN SUEEXIT
ot 70 FOR I=1 TO N1
Pt 8@ MAT X7=X
’ 99 N=C2(1)*ABS(X9(I))
-3 100 IF N<CZ(2) THEN N=C2(2)
R 110 X9(I)=X7(I)+N
Ko 120 CALL P3 ¢ 2,X9(),F2,60) )
N 136 IF N2=0 THEN 120
o 140 IF N2+N4=@ THEN 120
150 FOR J=1 TO N3I+N4
o 160 G1GJ,I1)=(G(ALCHI-AZ(N /N
oy 179 NEXT .
- 130 D(I)=(F2-F)/N
199 NEXT I

£00 GOTO 220
219 SFLAG 7 @ SUBEXIT
220 SUBEND
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Module: DIRECT

Called by: CCONT

Function: Solve the direction-finding subproblem in the
method of feasible directions.
Calculate constraint push-off factors (170-200).
Initialize working arrays for currently feasible
(2000-2080), or infeasible (1000-1090) designs.
Determine the direction vector S(), and the para-

meter BO (300-700).

Nomenclature:

A(,) Working array constructed from Gi1(,) and T()
B(,) Working array initialized as -ATa

BO Kuhn-Tucker parameter

B2 Intermediate element value used in pivoting
B3 Intermediate element value used in pivoting
B9 Interdediate variable used in pivoting

c() Working vector

DO() Working vector initialized as D()

Go(,) Working array initialized as Gi(,)

G9() Working vector used in constructing GO(,)
I9() Working vector of element indices
gﬁé J9 Working integer scaler
SZE K9 Working integer scaler
=

1 N9 Dimension of active/violated constraint set
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P() Working vector

T() Vector of constraint push-off factors

uQ) Working vector

L
L5

C Y() Solution vector, contains S() and BO
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210 NEXT I

220 IF N3>@ THEN GOSUB 1000 ELSE GOSUE 2000
230 MAT B=A*TRN(A)

240 MAT B=-B

250 N=UBND(B,1) :
260 MAT I19=ZER(N)

2790 A9,K9=0

280 FOR I=1 TO N

299 IF C(I)>=0 THEN 339
200 B9=C(I)/B(I,I)

310 IF B9<=A9 THEN 330

320 K9=1 @ A9=B9

330 NEXT I

340 IF K9=0 THEN 540

250 J9=19(K9)

360 19(K9)=0

370 IF J9=0 THEN I19(K9)=K9
380 B2=B(K7,K9)

390 FOR I=1 TO N

400 B(K9,1)=B(K9,1)/B2

410 NEXT I

e e R N RSB s
o
o
<l 10 SUB "DIRECT" (D(),G1(,),A10),AZ(),5(),Ba)
3 20 OPTION BASE 1
- 30 COM P$[6] , INTEGER N1,NZ,N3,N4,01,02,0%,04,C1(10) ,3HORT
C2(29)
N 40 SHORT B2,B3,B7,A(13,11),T(12),B(13,13),P(11),11(13),C(L12),
t ¥(11),00(19),60(12,10),G7(10)
N S0 INTEGER J9,K7,I19(12),N7
o 40 ON KEY# 1 GOTO 450
1 70 IF FLAG(?) THEN SUBEXIT
- 80 N9=N3+N4
x 90 REDIM T(N9),P(N1+1),Y(N1+1)
3 109 FOR I=1 TO N9
o 110 T(D)=C2(S)*#(1-A2(1)/C2(4))"2
£ 120 IF T(1)>C2(4) THEN T(I)=C2(&)
130 NEXT I
- 149 MAT P=ZER(N1+1)e@ MAT D&=D
Ay 150 MAT DO=(1/MAXAE(DA))*00O
) 160 MAT GO=G1
e 170 FOR I=1 TQ N%
ol 130 MAT G9=GO(I,)
190 MAT G9=(1/MAXAR(GYI))*GY
s 200 MAT GO(I,)=G?

BRI TR
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420 C(K?)=A9

430 B(K9,K?)=1/B2

449 FOR I=1 TO N

450 IF I=K9 THEN 529

4460 B3=B(I,K%)

470 B(I,K9)=0

430 FOR J=1 TO N

499 B(I1,J)=B(I,J)-B3#*B(K?,J)

S00 NEXT J

510 C(I)=C(I)-B3#*AYy

520 NEXT I

530 GOTO 270

=40 FOR I=1 TO N

556 U(1)=

S60 J9=19(1)

570 IF J9<=0 THEN 590

S30 U(I)=C(J7)

590 NEXT I

&00 MAT Y=TRN(A)*U

610 MAT Y=P-Y

620 MAT S5=Y(1:N1)

630 BO=Y(N1+1)

&40 GOTO &40

650 SFLAG 9 @ SUBEXIT

660 SUBEND

1000 MAT C=ZER(N9)@ MAT U=ZER(NY)
1010 MAT A=CON(N9,Ni+1)

1020 MAT A(, 1:N1)=G0

1030 MAT A(,N1+1)=T

1940 MAT P(1:N1)=00

1050 MAT P=-P

1060 P(N1+1)=C2(7)

1070 MAT C=A*P .
1080 MAT C=-C F
1090 RETURN

2009 MAT C=ZER(N7+1)@ MAT U=ZER(N9+1)
2010 MAT A=CON(NP+1,Ni+1)

2029 MAT A(1:N9,1:N1)=G0 .
2030 MAT A(1:N9,Ni+1)=T

2040 MAT A(NT+1,1:N1)=00

2050 P(N1+1)=1

2060 MAT C=A(,N1+1)

2070 MAT C=-r

2080 RETURN

>y
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Module:

Called by:

Calls:

Function:

FDSRCH

CCONT

PROB (edited)

Perform one-dimensional search for constrained
optimization in the method of feasible
directions.

Estimate initial search move parameter (1000~
1180).

Check for side constraint violations (2000-2050).
Establish bounds on solution, feasible (3000~
3340) or infeasible (4000-4360).

Refine solution by polynomial approximation,
feasible (5000-5240) or infeasible (6000-6580).

Nomenclature:

A
A0Q)
AQ)
A1l
A2
B(,)
DO
GO()
M()
Y()

Move parameter

Working vector of move parameters

Working vector of move parameters

Initial A based on change in objective function
Initial A based on attaining feasibility

Array of constraint values during search

Dot product of D() and S() or G1(i,) and S()
Working vector of constraint gradients

Working vector of maximum constraint values

Working vector of objective function values
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10 SUB "FOSRCH" (XO),LO),U0),F,00),G0),A10),AZ(),G1(,),5(),A
)

20 OPTION BASE 1

30 COM F306] , INTEGER N1,NZ,N3,N4,01,Q2,63,24,C1(18) ,SHORT
C2(20)

40 SHORT X7(1@),R1,R2,A1,A2,A(4),¥(4),M(4),B(4,50),00,50(10)
,PO,P1,P2,B0,A0(S1)

Se INTEGER I,K

40 ON KEY# 1 GOTO 210

7@ IF FLAG(?) THEN SUBEXIT

80 REDIM X7(N1),B(4,N2),GO(N1),AB(N2+1)

70 R1=(3-SOR(S))/2 @ R2=2-R1

109 A,A1,A2,A3,A(1)=0 @ CFLAG 4

110 MAT M=ZER(4)@ MAT X7=X@ Y(1)=F @ MAT B(1,)=G& M{1)=AMAX(
G)

120 GO3UB 1000

130 A(2)=A @ GNSUE 200

140 IF NZ=@ THEN GOSUE 3¢00% ELSE GOSUE 4060
156 IF N3=0 THEN GUSUB S000 ELSE GOSUE 4000
160 A=A(K)

170 IF A>C2(12) THEN 199

130 SFLAG 4 @ SUBEXIT

1990 F=Y(K) @ MAT G=B(K,)

200 GOTQ 220

21® SFLAG 9 @ SUBEXIT

220 SUBEND

1009 GOSUB 1059

1010 IF NZ#0 THEN 1030

1920 A=A1 @ RETURN

1030 IF AZ>2%A1 THEN A=2#A1 ELSE A=MAX(A1,A2)
1040 RETURN

1050 DO=D0T(D,S)

1069 A1=C2(8)*ARS(F) /ABS(0®@)

107% FOR I=1 TO N1

1080 A=C2(7)*ABS(X(I))/ABS(S(I))

1090 IF A<Al THEN Al=A

1100 NEXT I

1119 IF N3=0 THEN RETURN

1120 FOR I=1 TO N3

1130 MAT Go=G1(I,)

1140 D@=DOT(GO,S)

1150 A=-(AZ(1)/D0)

1160 IF AYA2 THEN A2=A

1170 NEXT 1

1180 RETURN

2000 MAT X=(1)%#XF+(A)*3

2010 FOR I=1 TO N1

2020 IF X(I)<L(I) THEN X(I)=L(I)

2030 IF X(I)>U(I) THEN X(I)=U(I)

2049 NEXT I

2059 RETURN
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J009
2010
020
3030
S049
3050
3060
3079
980
3099
3100
3110
31z9
23130
31409
3159
3169
3170
3180
3199
3200
3210
3229
3230
3240
3250
260
3279
J280
3299
33009
3310
5320
3339
2340

M(1)=AMAX ()

CALL P%+ ( 2,X0),F,G() )
M(2)=AMAX (13)

Y(2)=F

MAT B(2,)=G

IF Y(2)>Y(1) THEN 2079

A(Z)=A(1)+RI*(A(2)~-A(1))
A=A(3)

GOSUB 2000

CALL P$ ( 2,X(),F,G() )
M(3)=AMAX (3)

Y(2)=F

MAT E(2,)=06

RETURN

AC3)=A(2)

Y(2)=Y(2)

M(3)=M(2)

MAT G=B(2,)

MAT B(Z,)=G
A(2)=(1+R2)*A(3)~-R2*A(1)
A=A(2)

GOSUE 2000

CALL P$ ( 2,X(),F,5() )
Y(2)=F

M(2)=AMAX (G)

MAT B(2,)=03

IF ¥(2)»Y(2) THEN RETLRN

IF M(2)<=C2(12) THEN 32150

IF M(2)>C2(12) THEN RETLIRN

AC1)=A(3)
Y(1)=Y(32)
M(1)=M(3)
MAT G=E(3,)
MAT B(1,)=6
GOTO 2150
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4909
4919
4029
4020
4040
4050
496D
4070
4080
4970
4100
4119
4120
4130
4140
4159
41é&a
4170
41350
4190
4200
4210
4220
4230
4240
4259
4269
4270
4259
4299
4209
4310
4329
4339
4349
43509
43460

n\.-"..*

M(1)=AMAX (G)

CALL P$ ( 2,X(),F,G() )
Y(2)=F

M(2)=AMAX (G)

MAT B(Z2,)=G

IF M(2)*M(1) THEN 4080
IF M(2)>® THEN 4140

IF Y(2)<Y(1) THEN 414@
ACI=A(1)+R1I*(A(2)-A(1))
A=A (3)

GOSUE 2000

CALL P$ ( 2,X0),F,G() )
Y(3)=F

M(2)=AMAX (5)

MAT B(3,)=G

RETURN

ACI)I=A(2)

Y(3)=Y(2)

MAT G=B(Z,)

MAT B(2,)=0

M3 =M( 2

A(2)=(1+R2) *A(3)-RZ*A(1)
A=A(2)

GOSUB 2000

CALL P$ ( 2,X(),F,G() )
Y(2)=F

M(2)=AMAX(G)

MAT B(2,)=0G

IF M(2)3M(3) THEN RETURN
IF M(2):0 THEN 4310

IF Y(2)>Y(3) THEN RETURN
A(1)=A(3)

Y(1)=Y(3)

M(1)=M(3)

MAT G=B(3,)

MAT B(1,)=G

GOTO 4140




Sa0 P2V (3)=Y(1))/(A(3)-A(1))~(Y(2)=Y (1)) /(A(2)-A{1))) /(A
(3)-A(2))

5010 PI1=(Y(2)=Y(1))/(A(2)=-A(1))-F2*(A{1)+A(2))
5020 AD(1)==(P1/(2*P2))

SeZ® FOR I=1 T N2

5S040 P2=((B(2,I)-B(1,I))/(A(3)-A(1))=(B(2,I1)=-B(1, 1))/ (A(Z)-A
(1)))/CA(2)=A(2))

S9S9 P1=(B(2,1)-B(1,I))/(A(2)-A(1))-P2*(A(1)+A(Z))
S06D Fo=B(1,I)-P1*A(1)-P2*A(1)"2

S970 BO=P1"2Z-4*Po*P2

Sose IF Bo>®» THEN S110

S999 AB(I+1)==(PO/F1)

Si1@9w GOTO 5130

119 AO(I+1)=MAX(-P1+SOR(ED),-P1-SQR(RG))

S120 AG(I+1)=ARO(I+1)/(2*P2)

S120 NEXT I

5149 A(4)=AMIN(AD)

S150 A=A(4)

S140 GOSUR 2000

170 CALL P$ ( 2,X0),F,G() )

5180 Y(4)=F @ MAT EB(4,)=0

S19@ M(4)=AMAX(G)

S209 K=1

S219 FOR I=2 TO 4

2220 IF Y(I)<Y(K) AND M(I)<{=CZ2(12) THEN K=I

S230 NEXT I

5249 RETURN
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&@0d MAT AU=ZER(NI+1)

L0005 IF AMIN(M) >@ THEN 4260
EB1@ P =Y (1)) /(A =AC1) ) ~(Y(2)=Y (1)) /(A(Z)-A(1)) ) /(R
(3)-AC2))

&R0
(030
6040
L0350
L4609
4070
&O0
&O90
6100
&llo
£120
&1Z0
4140
&15e
61460
&179
&139
&190
L200
&210
6220
&230
&£23S
L2440

e
s

A

L R
AN

P1=(Y(2)=Y (1)) /(A(Z2)=-A(1))=P2Z*(A(1)+A(Z))

ARD(1)==(P1/(2*P2))

FOR I=1 TO N3

GOSUE &£490

IF Boro THEN &@79
AD(I+1)==(PO/P1)

GATO 4110
AD(I+1)=MIN(=-F1+IQR(BD),-P1-SQR(E?))
RA(TI+1)=AG(I+1)/(2%P2)
NEXT I

A(4)=AMAX (AD)

MAT AG=ZER(NZ-NI)E J1=1
FOR I=1 T N2

FOR J=1 TGO N&

IF I=A1(J) THEN 4240
NEXT J

GAsSUR 4549

IF Ba>0 THEN &220

ARA( I )==(PO/P1)

Ji=Jd1+1 @ GOTQ 4240

AD (M1 )=MIN(-P1+SOR(EQ) , -FP1-Z0R(EA))
ARG (J1)=Aa(.11)/ (Z*P2)
Ji=J1+1

NEXT I
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6250 A(4)=MIN(A(4),AMIN(AD))
260 A=A(4)

L2270 GUOSUE 2000

4230 CALL P$ ( 2,X(),F,G() )

&299 Y(4)=F @ MAT E(4,)=G

46309 M(4)=AMAX(G)

6319 K=1

6320 FOR I=2 TO 4

&332 IF Y(I)LY(K) AND M(I)<=C2(4) THEN K=1

4240 NEXT I

&350 RETURN

&£3460 P2={ (M -M(1)1)) /A=A )= IM(2)-M(1)) /(A(2)-A(1))) /(A
(3)-AC2))

6370 P1=(M(2)-M(1)) /(A(2)-A(1))-P2Z¥{A(1)+A(2))

6350 A(4)=—(P1/(2%F2))

&390 IF A(3)I<A(4) AND A(4)<A(Z) THEN &4Z@

6400 M(4)=2%*M(2)

&419 GOTO 6440

6420 A=A(4)

6430 GOSUR 2000

6449 CALL P$% ( 2,X(),F,i5¢) )

&459 M(4)=AMAX(G) @ Y(4)=F @ MAT B(4,)=G

4468 M=AMIN(M)

6479 K=AMINROW

4420 RETURN

6479 F2=((B(Z,A1(I)N)-B(1,AL(I) )/ (A(R)-A(1) ) =(B(Z,AL(I))-E(1
JALCI) NI/ CA(2)-AC1))) /7 (AC2)-A(2))

&509 PLI=(R(2,A1(1))-B(1,A1 (1)) /(A(2)-A(1))-P2#(A(1)+A(Z))
4510 PO=B(1,A1(1))-PI1*A(1)-P2Z*A(1)"2

6520 BO=P1"2-4RPORP2

4539 RETURN

£549 P2=((R(3, I)-B(1,IN /(A -A(1))=(B(2, I)=-RB(1,I))/(A(2)-A
(1N /(AME)-A))

6559 P1=(B(2, 1)-B(1, 1))/ (A(2)-A(1))-FP2R(A(1)+A(2))

4569 FO=B(1,I)-Pi#A(1)-P2*A(1)"2

6579 BO=P1"2Z-4*PO#*P2

6589 RETURN
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Module:

Called by:

Calls:

Function:

VMSRCH

UCONT

PROB (edited)

Perform unconstrained one-dimensional search in
variable metric method.

Establish bounds on the solution (100-350).
Refine the solution by polynomial approximation

(360-520).

Nomenclature:

AO
AQ)
A1()
DO
F9
YO)
V6D

Move parameter

Working vector of move parameters

Working vector of move parameters

Dot product of D() and S()

Working value of objective function

Working vector of objective function values

Working vector of objective function values
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10 SUR "VMSRCH" (X(),F,D(),S(),Ad)
20 OPTION BASE 1

20 COM P$C&) , INTEGER N1,N2,N3,N4,01,02,03,24,01(10) , SHORT
C2(20)

40 SHORT D0,A1(11),X7(19),¥(4),A(4),R1,R2,P1,P2,F3,Y1(4),F7,
B

S@ ON KEY# 1 GOTO S40

4@ IF FLAG(9) THEN SUEBEXIT

70 R1=(3-SOR(5))/2 @ R2=(1+SAR(S))/2
80 MAT A=ZER(4)@ MAT Y=A

90 Y(1)=F @ F9=0

169 De=DOT(D,5)

110 MAT A1=ZER(N1+1)

120 MAT X9=X

130 A1(1)=C2(2)*#ARS(F) /ARS(0G)

149 FOR I=1 TO N1

15@ A1(I+1)=C2(7)*ABS(XF(I))/AES(S(I))
160 NEXT I

170 A(2)=AMIN(AL)

130 MAT X7=(1)%X9+(A(2))*S

190 CALL P3% ( 2,X9(),F9 )

200 Y(2)=F?

210 IF Y(2)>Y(1) THEN 21@

220 A()=A(2) @ Y(R)=Y(2)

230 A(2)=(1+R2)*A(3)-RIZ*A(1)

240 MAT X9=X

250 MAT X7=(1)#X9+(A(2))*5

260 CALL P3$ ( 2,X9(),F9 )

270 Y(2)=F%

280 IF Y(2)>Y(3) THEN 340

290 AC1)=A(3) @ Y(1)=Y(3)

200 GOTO 229

210 A(3)=R1*A(2)

220 MAT X9=X

330 MAT X9=(1)#XT+(A(3))*5
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340 CALL P3$ ( 2,X7(),F9 )

350 Y(3)=F9

JEO PI=(Y()=Y{(1))*{(A(2)=-A(1))/(A(I)=-A(1)=(Y{(2)=Y (12 I*(A{Z) -
A(1)))

370 P3I=FP3/(A(2)=-A(1)+(A(Z2)~AZN)*DM) /{(A(2)~A (1)) *F(A(3)-A(1)
YRCA(Z)-A(2)))

38@ P2=((Y(2)=Y{1))/(A(2)=A(1))-00)/(A(2)-A(1) ) -PI#(Z#*A(1)+A
(2))

399 P1=DQ-2#P2#¥Q(1)-3*¥P3I*A(1)"2

400 B=PZ"2-23¥P1#P3

410 IF B>=¢ THEN 432@

420 J=3 @ GOTO 490

439 A(4)=(-PZ+SER(EB) )/ (3H#PZ)

2440 MAT X9=X

450 MAT X7=(1)¥*¥XY+(A(4))*Z

469 CALL P$ ( 2,X2(),F9 )

470 Y{(4)=F9

420 J=4

4790 MAT Yi=¥(1i:l)

500 F=AMIN(Y1)

S10 K=AMINROW

520 AO=A(K)

530 GOTQ S50

540 SFLAG 9 @ SUBEXIT

S50 SUREND
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NEWH

Called by: UCONT

L
"ﬁ_‘r

Pl st

Funetion:

(S
ey Sy,
Ve

‘o

L% )% g
A

‘l

P Y o0
4
Sl

Update the approximation to the inverse of the

Hessian matrix used in determining the search

direction in the variable metric method.

Nomenclature:

e
P

»
LR

)

N AT A
»:-"-«'r.. ]

A
Al

L S

L

P LR
Nl

»
I'd

e

»
.‘.
.
afn o

A,

PALS

7]
l'l.‘
200

l‘ \wl

TG, Y
faltxtaly

-

-
oy
o,

i

Y '

- e R

:
i;

Update matrix

Working vector initialized as X()-X1()
Dot product of P() and Y()

Working vector

Working vector

Working array

Working array

Working vector initialized as D()-D1()
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10 SUB "NEWH" (X(),X1¢),D(),D1¢),H(,))
20 OPTION BASE 1

S0 COM P$C6) , INTEGER N1,NZ,N23,N4,01,00,03,04,C1(10) , SHORT
CZ(20)

4¢ SHORT DO(19,1@),Y(10),P(1®),T1(16),T2(10,10),T(1),5, T3(1d
,19)

Sk ON KEY# 1 GOTO 230

49 IF FLAG(9) THEN SUBEXIT

7@ REDIM D@(N1,N1),Y(N1),P(N1),T1(N1),T2(N1,N1), TS(N1,N1)
20 MAT P=X-X1

90 MAT Y=D-I1

160 S=00T(P,Y)

110 MAT Ti=H#*Y

120 MAT TZ=T1*TRN(T1)

130 MAT T=TRN(Y)#*T1

149 MAT DO=P*TRN(P)

150 MAT DO=((3+T(1)I*C1(3))/52) %09

169 MAT DO=(1)*DO+((C1(3)=1)/T(1))*T2

170 MAT T2=T1*TRN(F)

159 MAT T3=F*TRN(T1)

190 MAT T2=TZ+TS

200 MAT DO=(1)#*DO+(—(C1(3)/5))*#T2

210 MAT H=H+DO

220 GOTO 249

230 SFLAG 7 @ SUBEXIT

249 ZUEEND

87




o p

= Module: CONV

o
131 Called by: CCONT, UCONT
£
A
i%’ Function: Determine whether the design has converged to the
.

optimum in the last iteration.

Vs
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Update convergence criteria based on iteration
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16 SUB "CONV" (X(),X1¢),F,F1)

20 OPTION BASE 1

20 COM P$C6] , INTEGER N1,NZ,N3,N4,01,02,03,04,C1(10) ,SHORT
C2(29)

40 SHORT X7(10)

S0 IF FLAG(?) THEN SUBEXIT

&0 CFLAG 6&

70 C2(3)=(C2(3)+ABRS((F1-F)/F1))/2

80 MAT X9=X1-X@ MAT X7=X7/X1

99 C2(7)=(C2(9)+MAXAB(X7)) /2

100 IF ABS(F1-F)<MIN(C2(13),C2(11)¥ABS(F1)) THEN Q3I=02+1 ELS
E @a=0

110 IF ABS(F1-F)/MAX(AES(F1),.00001)<C2(10) THEN R4=04+1 ELS
E R4=0

120 IF MAX(Q3,04)>=C1(Z) THEN SFLAG S

130 IF MAX(23,24)>® THEN SFLAG &

140 SUBEND
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Module: PROG

Called by: CCONT, UCONT

Function: Generate optimization progress information

output.
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10 SUB "PROG" (X®(),X(),Y,F)
20 OPTION BASE 1

3@ COM P3$L61 , INTEGER N1,NZ,N2,N4,G1,02,02,04,C1(10) ,SHORT
£2(20)

40 ON KEY# 1,"INTRPT" GOTQ 200

S0 IF FLAG(9) THEN SUREXIT

&0
79

IF FLAG(11) THEN 23¢
IF Q@1>1 THEN 130

100
110
120
130
140
150
1469
) 170
: 1380
170
200
210
229
230
240
<50
260
270
220
290
200
Sle

TR Y 9P e T T .U Y T8 TR

e — - 4

9 GCLEAR @ PEN 1 @ LORG S
4 99 SCALE -2,21,-3.2,3.2

XAXIS 0,1,0,20

YAXIS ©,1,-3,3

FOR I=-32 TO 3

MOVE -.5,1 @ LABEL I

NEXT I

MOVE 10,32 @ LABREL "Iteration Histary"
MOVE 19,2.7 @ LAREL Pt

MOVE -2.1,5 @ LABEL "K1 to interrupt"
FOR I=1 TO N1

MOVE Q1,X(I)/X0(I) @ LABREL I

NEXT I

MQVE Q1,Y @ LAEEL "r"

SUBEXIT

IF Q1>1 THEN 270

CLEAR @ DISP USING "132X,4A" 5 F$
DISF "Iteration b jective Function"
KEY LABEL

DISP USING 280 ;5 Q1,F

IMAGE 3X,2D,12X,K

GOoTQ 210

SFLAG 7 @ SUBEXIT

SUBEND
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Module: TERM

Called by: CCONT, UCONT

Function: Generate output of optimization results.
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19 SUB "TERM" (X(),

20 OPTION BASE 1

J0 COM F$L41]

C2(29)

49 IF FLAG(7) THEN
S0 GOSUB 1900

&9 IF FLAG(1) THEN
79 IF FLAG(2) THEN
8@ IF FLAG(3) THEN
7@ IF FLAG(3) THEN

199

110

120

130

140

150

1009
1910
19029
1020
1049
1059
1060
1070
1029
1999
1100
1110
1120
1120
1149
1159
2000
3000

FRINT @ PRINT

FRINT USING "132X,&A"

F,G())

SUBEXIT

GOSUR Zewo
GDSUER 3000
GOSUB 4099
GQSUB S0vo

SUBEXIT

Y )

FRINT USING 1aze ;3 F

IMAGE 1/,2X, "OJFPTIMUM

FOR I=1 TQ N1

, INTEGER N1,N2,NZ,N4,Q1,02,63,04,C1(10)

IF FLAG(S) THEN GOSUR &ooe
IF FLAG(11) THEN 150
FRINT @ PRINT @ PRINT
GRAFPH @ COFPY @
FRINT @ FRINT € CopPY
SUBEND

Ft

n -
3 k-.

PRINT USING 1060 53 I,X(I)
IMAGE 1/, 10X,"X(",K,") =

NEXT I

IF NZ=o THEN 1130

FOR I=1 TO N2

W o bE

PRINT USING 1119 ; I,G(I)
IMAGE 1/,10X, "3(",K,") =

NEXT I

PRINT @ PRINT
SFLAG 19
RETURN

@ FRINT "Terminatinn

FRINT "Exceeded max. no.

FRINT "Excessive number of violated

RETURN

4009
qn. ]

S09® FRINT "Failure to find a move parameter to

FRINT "Failure to tind a direction to

@ RETURN

design." @ RETURN
49000 FRINT "Canvergence" @ RETURN

II’K

of iteraticans." @ RETURN
constraints. "

S3

an:" @ PRINT

imprave the desi

improve the

v
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Listings of the edited versions of PROB which were used
for the test cases presented in Chapter IV are included as
examples of MDOT problem input. The subprogram used to enter
the unconstrained test problem was renamed "BANANA", while

that edited for the constrained problem was renamed "BEAM",
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19 SUB "BANANA" (i, XO),F,G0),L),L())

29 OPTION BASE 1t

29 COM P$L63 , INTESGER NI,NZ,NZ,N4,31,02,082,34,C1(1@) |, SHORT
c2(22)

35 SHORT X1, X2, X3, X4, XS, Xé&, X7, X2, X9, X0

49 DIM L$L&6], U841

S0 IF K1>1 THEN 22¢

7@ READ N1, /N2

102 DATA 2,0

105 IF Ki=0 THEN SUREXIT

130 FOR I=1 TO Nt

14 READ X(I)

142 IF NZ=& THEN 179

144 READ L t,U%

150 IF L#="N" THEN L(I)=—-1.E%99 ELSE L(I)=VAL(L%)

160 IF U$="N" THEN L(I)=1.E%7 ELSE U(I)=VAL (I1%)

1790 NEXT 1

29! DATA -1

202 DATA 1.5

202 DATA

204 DATA

205 DATA -

206 DATA

207 DATA

20 DATA

207 DATA

219 DATA

229 S0SUE 9919

230 ! User—-defined expressians

379 ! Dbjective function

400 F=1#X1"4-20#X 1 2¥X2+1Q* X2 2+ X1"2-2#X1+5

497 Q2=02+1

S00 ! CONSTRAINTS

9909 SUBEND
701@ X1=X(1)
7020 X2=X(2)
7020 X3=X(3)
9040 X4=X(4)
7050 XS=X(3)

IF Ni=1 THEN RETLRN
IF N1=2 THEN RETURN
IF Ni=Z THEN RETLURN
IF N1=4 THEN RETURN
Ni=5 THEN RETURN

PRAAMAMADPREP
4
mn

960 X&=X(&) IF Ni=4 THEN RETURN A
9970 X7=X(7) IF Ni=7 THEN RETLRN ;
980 X8=X(L) IF Ni=3 THEN RETURN i
7099 X9=X(9) IF Ni=9 THEN RETURN <
919090 X0=X(19) @ RETURN F
!.1
4
3
,:4
”

=1
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10 SUB "BEAM" (K1,X(O),F,G(),L(),U())
20 OPTION BASE 1
30 COM P3$[é] ,INTEGER N1,NZ,N2,N4,Q1,Q2,Q03,084,01(16) |
C2(29)
33 SHORT X1,X2, X3, X4,X3, X&,X7,X3, X9, X0
49 DIM L3$L61,U8L4]
S50 IF Ki1i>1 THEN 220
99 READ N1,N2
100 DATA 2,3
4 105 IF Ki1=0 THEN SUBEXIT
110 REDIM L(N1),U(N1),X(N1),G(N2)
130 FOR I=1 TO N1
149 READ X(1I)
142 IF N2=0 THEN 170
144 READ L#,U%
150 IF L3$="N" THEN L(I1)=—1.E77 ELSE L(I)=VAL(L®$)
160 IF U$="N" THEN W(I)=1.E99 ELSE 1(I)=VAL (Lit)
17@ NEXT 1
201 DATA 3.5,.5,5
202 DATA 16,1,20
203 DATA
204 DATA
205 DATA
2046 DATA
207 DATA
208 DATA
209 DATA c
2190 DATA
E 220 GOsUB 9910
230 ! User—defined expressians
301 B=X1
302 H=X2
399 ! Objective function
400 F=200#B*H
499 Q2=02+1
S00 ! CONSTRAINTS
501 G(1)=600/(B*H"2)-1
S02 G(2)=10646.7/(B¥H"3) -1
503 G(3)=H/10-B
9000 SUBEND
7010 X1=X(1)
9020 X2=X(2)
9030 X3=X(3)
7040 X4=X(4)
9050 X35=X(3)
FOLD Xb&=X(6)
s 9070 X7=X(7)

H

o
o
_-'

IF Ni=1 THEN RETURN
IF N1=2 THEN RETURN
IF N1=3 THEN RETURN
IF N1=4 THEN RETURN
IF N1=5 THEN RETURN
IF Ni=4 THEN RETURN
IF N1=7 THEN RETURN
7080 X&=X(8) IF N1=8 THEN RETURN
F099 X9=X(F) IF Ni=7 THEN RETURN
9109 X0=X(10) @ RETURN

PRAPARARR
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